LED散熱途徑
依據不同的封裝技術,其散熱方法亦有所不同,而LED各種散熱途徑方法約略可以下圖示意之:
1. 從空氣中散熱
2. 熱能直接由System circuit board導出
3. 經由金線將熱能導出
4. 若為共晶及Flip chip制程,熱能將經由通孔至系統(tǒng)電路板而導出)
LED晶粒散熱基板
LED晶?;逯饕亲鳛長ED 晶粒與系統(tǒng)電路板之間熱能導出的媒介,藉由打線、共晶或覆晶的制程與LED 晶粒結合。而基于散熱考量,目前市面上LED晶?;逯饕蕴沾苫鍨橹?,以線路備制方法不同約略可區(qū)分為:厚膜陶瓷基板、低溫共燒多層陶瓷、以及薄膜陶 瓷基板三種,在傳統(tǒng)高功率LED元件,多以厚膜或低溫共燒陶瓷基板作為晶粒散熱基板,再以打金線方式將LED晶粒與陶瓷基板結合。如前言所述,此金線連結 限制了熱量沿電極接點散失之效能。因此,近年來,國內外大廠無不朝向解決此問題而努力。其解決方式有二,其一為尋找高散熱系數之基板材料,以取代氧化鋁, 包含了矽基板、碳化矽基板、陽極化鋁基板或氮化鋁基板,其中矽及碳化矽基板之材料半導體特性,使其現階段遇到較嚴苛的考驗,而陽極化鋁基板則因其陽極化氧 化層強度不足而容易因碎裂導致導通,使其在實際應用上受限,因而,現階段較成熟且普通接受度較高的即為以氮化鋁作為散熱基板;然而,目前受限于氮化鋁基板 不適用傳統(tǒng)厚膜制程(材料在銀膠印刷后須經850℃大氣熱處理,使其出現材料信賴性問題),因此,氮化鋁基板線路需以薄膜制程備制。以薄膜制程備制之氮化 鋁基板大幅加速了熱量從LED晶粒經由基板材料至系統(tǒng)電路板的效能,因此大幅降低熱量由LED晶粒經由金屬線至系統(tǒng)電路板的負擔,進而達到高熱散的效果。
另一種熱散的解決方案為將LED晶粒與其基板以共晶或覆晶的方式連結,如此一來,大幅增加經由電極導線至系統(tǒng)電路板之散熱效率。然而此制程對于基板的布線 精確度與基板線路表面平整度要求極高,這使得厚膜及低溫共燒陶瓷基板的精準度受制程網版張網問題及燒結收縮比例問題而不敷使用。現階段多以導入薄膜陶瓷基 板,以解決此問題。薄膜陶瓷基板以黃光微影方式備制電路,輔以電鍍或化學鍍方式增加線路厚度,使得其產品具有高線路精準度與高平整度的特性。共晶/覆晶制 程輔以薄膜陶瓷散熱基板勢必將大幅提升LED的發(fā)光功率與產品壽命。
近年來,由于鋁基板的開發(fā),使得系統(tǒng)電路板的散熱問題逐漸獲得改善,甚而逐漸往可撓曲之軟式電路板開發(fā)。另一方面,LED晶?;逡嘀鸩匠蚪档推錈嶙璺较蚺?。
內容來自百科網